دسته بندی | نفت و گاز |
بازدید ها | 9 |
فرمت فایل | docx |
حجم فایل | 7572 کیلو بایت |
تعداد صفحات فایل | 299 |
این کتاب در مورد اصول طراحی و ساخت دستگاه های بیوگاز در 299 صفحه در قالب ورد و قابل ویرایش می باشد.
در ده سال اخیر بعلت کمبود انرژی و افزایش قیمت آن در کشورهای وارد کننده مواد سوختی مورد توجه خاص قرار گرفته است. در حال حاضر رشد مصرف انرژی در جهان سه برابر رشد جمعیت است. بشر برای بدست آوردن رفاه بیشتر، نیاز به انرژی بیشتری دارد. افزایش قیمت منابع انرژی تجدیدناپذیر (فسیلی) از دهه 1970 به بعد، همچنین محدودیت و مخاطرات زیست محیطی (برهم زدن تعادل گرمایی جو زمین و ...)، توجه بسیاری از محققان در سراسر جهان را به منابع انرژی تازه معطوف کرده است. منابعی که احیاپذیر بوده و مخاطرات زیستمحیطی کمتری را داشته باشند. انرژیهای نوین با ساختاری متفاوت از انرژیهای فسیلی، باعث تحولی عظیم در استفاده از انرژی شدهاند. در این میان، با توجه به رشد فزاینده نیاز و تقاضا برای انرژی (هر ده سال دو برابر میشود)، تلاش برای یافتن منابع جانشین انرژی امری ضروری است. بیوگاز حاصل از زیستتوده از مهمترین انرژیهای نوین میباشد. امروزه ازدیاد روزافزون مواد زائد و تولید انرژی از این مواد با توجه به سهولت فناوری و اقتصادی بودن این منابع سبب گردیده است تا توسعه آنها در بسیاری از کشورهای جهان، به صورت یک فناوری صنعتی مورد استفاده قرار گیرد. در خصوص تخریب لایه ازن که اکنون مسئله روز جهانی شده است، گفته میشود که در سطح جهان سالیانه حدود 40 میلیون تن گاز متان تنها از زبالههای شهری خود به خود تولید شده و در جو زمین پراکنده میگردد که جمعآوری و سوخت آنها به صورت مناسب به خوبی امکانپذیر است. بعضی از کشورهای جهان برای حل مشکل یاد شده و نیز برای توزیع نوین سوخت به مناطق روستایی به استفاده علمی از انرژی زیستی از طریق تولید بیوگاز از مواد مختلف اقداماتی انجام داده اند. از جمله این کشورها می توان هلند، ایتالیا، چین، کره شمالی، پاکستان، هندوستان و نپال را نام برد.به دنبال اهداف فوق، بیشتر کشورهای جهانسوم و همچنین، اغلب کشورهای صنعتی به بهرهبرداری از سیستمهای بیوگاز برآمدهاند. در این مقاله روند پیشرفت بیوگاز در قرن اخیر مورد مطالعه قرار گرفته است.
در طی قرن دهم قبل از میلاد مسیح در آشور و در قرن شانزدهم در ایران از بیوگاز برای گرم کردن آب جهت حمام و شستشوی بدن استفاده میشد. در سال 1776 میلادی الکساندر ولتا نتیجه گرفت که بین مقدار مواد آلی فسادپذیر و میزان گاز قابل اشتعال رابطه مستقیمی وجود دارد (عبدلی، 1364). در سال 1859 اولین واحد تخمیر بیهوازی در بمبئی هند ساخته شد. در سال 1860 میلادی اولین واحد استفاده شده برای تصفیه مواد جامد فاضلاب بوسیله شخصی به نام اچ ـ موراس بکار گرفته شد (نجفپور، 1374). در اروپا برخی واحدهای بیوگاز بیشتر از20 سال است که مشغول به کار هستند. در حال حاضر بیش از600 واحد هاضم در اروپا مشغول بکار میباشند و تنها در کشور آلمان در حدود250 واحد بیوگاز، طی پنج سال گذشته نصب شده است. از نیمه اول قرن بیستم در بسیاری از کشورها ساخت دستگاههای تولید کننده بیوگاز و استفاده از گاز حاصله آن به منظور پخت و پز، تأمین روشنایی و بکار انداختن موتورهای احتراقی وسایل نقلیه به سرعت توسعه یافت (ثقفی، 1382). در این بین کشورهای چین و هند بیش از سایر کشورهای دیگر به ساخت و بهرهبرداری از دستگاههای تولیدکننده بیوگاز پرداختهاند (سالک، 1373). بیش از نیمقرن پیش در تصفیهخانههای فاضلابهای شهری در اروپا استفاده از گاز متان حاصل از تخمیر مواد بیولوژیکی مطرح بود؛ اما استفاده از بیوگاز بصورت متداول از جنگ جهانی دوم به بعد مطرح شد. اهمیت و توسعه بیوگاز در جهان طی سالهای اخیر بسیار مورد توجه قرار گرفته است. به عنوان مثال تعداد این دستگاهها در چین از سال 1920 تا سال 1985 بالغ بر هفت میلیون برآوردگردیده که نیازهای انرژی پنجاه میلیون روستایی را بر طرف مینماید. درکشور امریکا بیش از 400 ژنراتور بزرگ و کوچک بیوگاز برای مصارف خانگی و صنعتی از انرژی بیوگاز استفاده مینماید (عمرانی، 1375).
تعداد هاضمهای کوچک و متوسط مورد استفاده در سطح جهان در سال 2005 از 25 میلیون واحد فراتر رفته و دهها هزار واحد بزرگ بویژه در اروپا و آمریکا نصب شده است. دامداریها، مجتمعهای کشاورزی و تقریباً تمام تصفیهخانههای فاضلاب کشورهای اروپای غربی موظف به استفاده از هاضمهای بیهوازی و واحدهای بیوگازی شدهاند (جدول 1).
جدول 1- تعداد واحدهای بیوگاز ساخته شده در کشورهای مختلف
راندمان مناسب فرآیند هضم بیهوازی در حل معضل زبالهها و تولید انرژی باعث توجه کشورهای اروپایی نظیر دانمارک، سوئد، فرانسه، آلمان، هلند، ایتالیا، انگلستان و ... به استفاده و توسعة این فناوری شده است (ثقفی، 1382). علاوه بر کشورهای اروپایی، کشورهای آمریکایی و آفریقایی هم به منظور تأمین بخشی از انرژی خود، استفاده از فرآیند هضم بیهوازی را مد نظر قراردادهاند. آمریکا از جمله کشورهایی است که تمایل زیادی به استفاده از نیروگاههای بیوگازی صنعتی نشان داده است. هاضمهای موجود در آمریکا اکثراً دارای حجمهای بالا با قابلیتهای کاربرد متنوع برای استفاده از فاضلاب و زبالههای شهری، فاضلاب صنعتی، فضولات دامی و زائدات کشاورزی ساخته شدهاند. آمریکا علاوه بر توجه به کاربرد بیوگاز، در مبحث تحقیقات بیوگازی نیز از کشورهای پیشتاز در جهان میباشد. در سا ل 2003 پروژه (MEAD) توسعه بیوگاز در آمریکا را شتاب قابل توجهی بخشید (سالک، 1373). افزایش مواد زائد در جهان اعم از مایع یا جامد و تولید بیوگاز از این مواد، با توجه به سهولت فناوری و ساخت دستگاه تولید بیوگاز در شرایط بیهوازی سبب شده است که تولید و مصرف آن در بسیاری ازکشورها به دو صورت (صنعتی وسنتی) مورد توجه قرار گیرد. کشورهای هند و چین در دهه 1930 میلادی، به طور وسیع به ساخت دستگاههای بیوگاز اقدام نمودند (نجفپور، 1374).
در کشورهاى اروپاى غربى و جنوب شرقى آسیا فناورى تولید انرژى از بیوگاز بسیار قابل توجه است. در میان کشورهاى اروپایى به کشور سوئد مىتوان اشاره کرد که در زمره بهترین مصرف کنندگان این نوع از انرژى در صنعت حمل و نقل به حساب مىآید. صنعت بیوگاز در کشورهای آسیای جنوب شرقی، در سطح بسیار وسیعی پیاده شده است و موفقیتهای چشمگیری نیز داشته است (ثقفی، 1382).
اغلب کشورهای پیشرفته طرحهای بزرگی در زمینه استفاده از بیوگاز در مناطق روستایی به مرحله اجرا گذاشتهاند. به عنوان مثال، در کشور چین800 میلیون روستایی80 % انرژی مورد نیاز روزانه خود را از منابع زیستی به دست میآورند؛ در غیر این صورت طبق برآوردها سالانه باید حدود500-400 میلیون تن چوب و شاخ و برگ در مناطق روستایی سوزانده شود. ذکر این نکته ضروری است که انرژی حرارتی ناشی از سوختن بیوگاز تولید شده از منابعی همچون چوب و... در مقایسه با سوزاندن مستقیم آنها30-40% افزایش نشان میدهد. امروزه نصف جمعیت جهان برای استفادههای گرمایی و آشپزی از چوب استفاده میکنند و مصرف چوب سالانه حدود۲ الی ۳ درصد افزایش مییابد (نجفپور، 1374). درسال۱۹۹۰ مصرف چوب، درحدود ۲ میلیارد متر مکعب (حدود۱۰ میلیون بشکه در روز معادل نفت) بوده است. منابع انرژی بیومس (زیستتوده) را میتوان با استفاده از روشهای جدید مهندسی ژنتیک گسترش داد. راههایی نیز وجود دارد که از آنها میتوان برای بالابردن کیفیت سوخت استفاده کرد، مانند تبدیل چوب به زغال، زباله چوب و خاک اره را هم از طریق فشردن و شکل دادن، به صورت قالب(Pellet) در میآورند. درآمریکای شمالی و اروپا از این قبیل سوختهای جامد در صنایع استفاده میشود (سالک، 1373).
بیشتر کشورهای دنیا برنامهریزی گستردهای برای تأمین انرژی مورد نیاز خود از طریق انرژیهای نو انجام دادهاند. با توجه به روند کنونی، کشورهای اروپایی به دنبال توصیه اتحادیه اروپا، به سمت استفاده از انرژیهای جانشین و تجدیدپذیر، تا سال۲۰۳۰ میلادی حدود ۱۵ درصد از مجموع انرژی مورد نیاز خود را از طریق انرژیهای تجدیدپذیر، تأمین خواهند کرد. دنیای امروز نیاز مبرم می داند که توجه زیادی برای تولید و استفاده از بیوگاز نشان دهد. اغلب کشورهای پیشرفته طرحهای بزرگی در این زمینه به مرحله اجرا گذاشتهاند، درکشورهای اسکاندیناوی طرحهای بزرگ صنعتی با استفاده از بیوگاز، راهاندازی شده است. کشور سوئد تا سال۲۰۵۰ میلادی، ۴۰% از بازار خودرو خود را به استفاده از بیوگاز مجهز میکند که آن را از فرایند سینیتیک بر روی چوب تأمین میکند. در کشور انگلیس آییننامه کاربرد سوختهای تجدیدپذیر در ترابری این کشور، برای شرکتهای دستاندر کار فعالیتهای انرژی مانند، شرکتهای نفتی، مؤسسات واردکننده نفت و گاز و دیگر نهادهای عرضه کننده سوخت، لازمالاجرا خواهد بود. استفاده از بیوگاز در اغلب کشورهای جنوب شرقی آسیا که با مشکل سوخت فسیلی مواجه هستند، وجود دارد (نجفپور، 1374). از این سیستم برای سه منظور استفاده میکنند: تولید انرژی برای روستاها با قیمت ارزان، بهسازی محیط زیست و جلوگیری از آلودگی آن و تهیه کود حیوانی غنیتر برای کشاورزان. کمبود و افزایش قیمت روز افزون سوختهای فسیلی از یکسو، وفور مواد فسادپذیر و سادگی عمل با توجه به هزینههای کم از سوی دیگر، سبب گردیده تا ساختمان دستگاه تخمیر و تولید بیوگاز در بسیاری از کشورهای اروپایی و حتی آمریکا بصورت یک تکنولوژی ساده و سنتی مورد استفاده قرار بگیرد (عبدلی، 1364). کشورهای اروپایی عمدتاً با توجه به نداشتن ذخائر نفتی کافی و یا محدودیت آن، آغازگر حرکت به سمت استحصال انرژی از منابع تجدیدپذیر بودهاند و مطالعاتی را جهت یافتن کلیه منابع موجود در تبدیل به سوخت و انرژی نمودهاند.
در کشورهای اروپایی نظیر بلژیک، دانمارک، فرانسه، یونان، هلند، انگلستان، ایتالیا و ایرلند تا سال 1982 نزدیک به 600 هاضم وجود داشته که از پسماندهای کشاورزی، فضولات انسانی و فاضلابهای صنعتی تغذیه مینمودهاند. 20% انرژی اروپا تا سال 2020 از طریق بیوگاز تامین خواهد شد. بیوگاز یک روش تأمین انرژی است که کربنی تولید نمیکند. مواد منتج شده از گیاهان و حیوانات ( نظیر فضولات حیوانی یا ضایعات گیاهی ) در طول دوره ماند (ماندگاری) خود، تا زمانی که تجزیه شوند تنها دیاکسید کربن تولید میکنند و هیچ گونه انرژی تولید نمینمایند، در حالی که برق تولید شده از بیوگاز نسبت به انرژیهای معمول انتشار دیاکسید کربن بسیار کمتری دارد (عمرانی، 1375). 1کیلووات تولید برق با بیوگاز از تولید 7000 کیلوگرم دیاکسید کربن در هر سال جلوگیری میکند. با توجه به این که امروزه واردات بنزین، بودجه زیادی لازم دارد، میتوان با بهرهگیری از بیوگاز به عنوان منبعی پاک و در دسترس علاوه بر کاهش وابستگی به واردات بنزین و همچنین آلودگیهای ناشی از مصرف بنزین در حملونقل، به حفظ منابع نفت و گاز به عنوان سرمایههای ملی کوشید (ثقفی، 1382).
آشنایی با نحوه تولید و استفاده از بیوگاز در کشورهای دیگر به منظور استفاده ازنکات مثبت تجربیات آنها بسیار مفید است. در ادامه نحوه تولید و استفاده از بیوگاز در چند کشور به اجمال مورد بررسی قرارمیگیرد (عمرانی، 1375):
کره
در کره اهمیت تولید بیوگاز به صورت جدی مورد توجه قرار گرفته است؛ بهطوریکه تا سال1975 حدود 30000 واحد بیوگاز در این کشور فعال بوده است.
چین
اهمیت و توسعه بیوگاز در جهان طی سالهای اخیر بسیار مورد توجه قرار گرفته است؛ بهطوریکه تعداد این دستگاهها در چین از سال 1920 تا 1972 تنها 1300 و بعد از آن تا سال 1985 بالغ بر هفت میلیون برآورد گردیده است (عبدلی، 1364). در این کشور بیش از 400 ژنراتور بزرگ و کوچک بیوگاز برای مصارف خانگی و صنعتی از انرژی بیوگاز استفاده مینمایند. کشور چین با ابداع نوعی سیستم زراعی همراه با دام توانسته است گیاه و دام را در یک سیستم، در ارتباط با زنجیره ریزهخواری قرار دهد. در این سیستمها برنج محصول زراعی اصلی است، زمانیکه دانه برداشت میشود کاه وکلش، همراه با کود دامی در یک دستگاه هضم کننده بیوگاز به صورت کمپوست در میآید که متان حاصل از این فرایند برای پختوپز و روشنایی و لجن باقیمانده در دستگاه هضم کننده، برای تولید قارچ خوراکی مورد استفاده قرار میگیرد. بعد از اینکه قارچ برداشت شد، بقایای ماده آلی هم به عنوان کود آلی به مزارع برنج برگردانده میشود (نجفپور، 1374). این سیستم، از نظر مصرف انرژی و چرخش عناصر غذایی بسیار کارآمد است (شکل 1و2).
وضعیت انرژی هند در مقایسه با سایر کشورهای توسعه یافته تفاوت بسیاری دارد که حکایت از مجموعهای از منابع متعدد انرژی، برای تأمین نیازهای مردم این کشور دارد. در گذشته، اقدامهای هند به دلیل فعالیت های پراکنده و مجزا موفق نبوده است. روند حرکت به سمت انرژی های نو در هندوستان سه مرحله را پشت سر گذاشته است (عبدلی، 1364):
مرحله اول: در اواخر دهه 1970 و اوایل دهه 1980 بیشتر تلاشها در زمینه بیوگاز، ساخت اجاقهای مدرنتر و استفاده از انرژی خورشیدی و تلاش برای افزایش آگاهی مردم بود.
مرحله دوم: تأسیس وزارت انرژیهای غیرمرسوم در سال 1992 بود که پس از آن مؤسسات و سازمانهای زیادی درخصوص تأمین سوختهای مناطق مختلف و با هدف افزایش اشتغال در مراکز روستایی و محلی مشغول فعالیت شدند.
مرحله سوم: فعالیتهای جاری به صورت منسجمتری انجام شد و بر توسعه فناوریها برای تولید برق از باد، ایجاد نیروگاههای کوچک آبی، توسعه سیستمهای ترکیبی تولید انرژی از بیوگاز و بیومس تأکید شد. مجموعه این تلاشها سبب شد که از بار مشکلات و سختیهای تأمین انرژی برای روستائیان و همچنین آلودگیهای زیستمحیطی در کشور هند به نحو مؤثری کاسته شود. از اقدامهای مهم انجام شده در حوزههای مختلف انرژ یهای تجدیدپذیر در هند میتوان موارد زیر را نام برد (عدل، 1378):
در سال 200 در هندوستان انرژی بیومس حدود یکسوم کل انرژی مصرفی کشور را به خود اختصاص میداد، که 90 درصد آن در مراکز روستایی و 10 درصد در مراکز شهری به مصرف میرسید. واحدهای تولید بیوگاز در کشور هند رواج زیادی پیدا کرده است، به طوری که هماکنون برای روشنایی منازل و یا معابر نیز در روستاها مصرف می-شود. پسماندهای گیاهی نیشکر از منابع تولید انرژی است که نوعی انرژی بیومس بوده و میتوان تولید انرژی برق حاصل از آن را تا 340 مگاوات در هند افزایش داد. دولت هند در صدد است تا طرحهای استفاده از این نوع انرژی را در نواحی مختلف کشور گسترش دهد. از سال 2000 تا سال 2010 میزان مصر
منابع
ثقفی، محمود (1382) " انرژیهای تجدید پذیر نوین". انتشارات امیرکبیر، چاپ دوم.
عدل، مهرداد (1378) "برآورد قابلیتهای تولید انرژی از زائدات زیستی". پایان نامه کارشناسی ارشد، دانشکده محیط زیست، دانشگاه تهران.
قارداشی، ابوالقاسم علی و مهرداد، عدل (1379)""گزارش بررسی اقتصادی پروژه زیست توده" .گروه انرژیهای نو، پژوهشگاه نیرو.
قارداشی، ابوالقاسمعلی و عدل، مهرداد (1380) "بیوگاز در ایران". سومین همایش ملی انرژی
دسته بندی | معماری |
بازدید ها | 6 |
فرمت فایل | docx |
حجم فایل | 2212 کیلو بایت |
تعداد صفحات فایل | 60 |
فهرست
مقدمه. 4
تاریخچه پل کابلی.. 5
پل کابلی و نحوه عملکرد آن.. 5
طبقه بندی پل های کابلی.. 6
مزایای و تفاوت های پل کابلی.. 6
مهار کابلی چگونه کار می کند؟. 7
پل کابلی و نحوه عملکرد آن.. 8
مزایای و تفاوت های پل کابلی.. 9
سازه های پارچه ای.. 10
شکل غشا در سازه های پارچه ای: 10
جنس غشا در سازه های پارچه ای : 10
سیستم های تکیه گاهی: 10
گسترش جانبی قاعده غشا 11
تحلیل واکنش سازه های پارچه ای در برابر بارهای وارده 11
مراحل تولید و ساخت... 12
تعریف سازه کششی.. 12
انواع سازه کششی: 13
فرم های اصلی سازه های کششی.. 13
سطح زین اسبی.. 14
خیمه (Conic): 14
آرک (Arch): 14
دلایل استفاده از سازه کابلی 15
منحنی مضاعف... 16
مزایای سازههای کابلی.. 16
رفتار سازههای کابلی.. 17
تحلیل استاتیکی قطعات و سیستمهای سازههای کابلی.. 17
رانش در سازههای کابلی.. 18
سازههای معلق با فرم منحنی طنابی.. 18
سازههای با کابل مضاعف... 18
سازههای با انحنای دوگانه. 18
پل کابلی و نحوه عملکرد آن.. 19
طبقهبندی پلهای کابلی.. 19
مقایسه پل کابلی ترکهای و معلق و پل بازوئی.. 20
سیستم کابلی برای مقاوم سازی ساختمانهای بتنی.. 20
مزایای این سیستم.. 21
تاریخچه پل کابلی.. 22
الگوی یک پل کابلی.. 22
پل کابلی و نحوه عملکرد آن.. 22
طبقهبندی پلهای کابلی.. 23
مزایای و تفاوتهای پل کابلی.. 24
مهار کابلی چگونه کار میکند؟. 24
پلهای معلق.. 26
سازه های کابلی.. 26
سقف های کابلی : 27
معایب سقف های ساده کابلی.. 27
مزایای سازه کابلی.. 29
سقف زین اسبی کلگری: 29
افت کابل.. 37
کابل مضاعف... 39
تاریخچه پل کابلی.. 41
پل کابلی و نحوه عملکرد آن.. 41
طبقه بندی پل های کابلی.. 42
مزایای و تفاوت های پل کابلی.. 42
مهار کابلی چگونه کار می کند؟. 43
طراحی سازه کابلی.. 47
پل کابلی و مزایا و معایب آن: 49
ازخواص کابل می توان به موارد زیر اشاره کرد: 54
تاریخچه پل کابلی: 54
طبقهبندی پلهای کابلی: 55
تعریف سازههای چادری.. 57
تاریخچه سازه چادری.. 57
مزایای سازههای غشایی.. 58
تکیه گاه ها 58
منابع.. 59
مقدمه
سازههای کابلی سازههایی هستند که تنشهای داخلی فقط به صورت فشار و کشش مستقیم است. اگر بار دیگری به آن اضافه شود، شکل بارگذاری تغییر کرده و به صورت سه بخش که هر یک قسمتی از بار را تحمل میکنند، تقسیم میشود. بارهای اضافی دیگر تعداد تقسیمات را افزایش داده تا به فرم منحنی کامل که عمل توزیع را بر عهده دارد، تبدیل نشود. در هر حال کابل فقط تحت کشش است. در این نوع سیستم اعضای اصلی که همان کابلها هستند به صورت کششی عمل می کنند. این سازهها برای طراحی پلها، پوشش دهانههای بزرگ، سقفها و … مورد استفاده قرار میگیرند. سادهترین مثال از یک سازه کششی یک وزنه آویخته از یک کابل است، وزنه دقیقاً در امتداد کابل ساکن میشود. در حالی که بین دو نقطه اتصال به صورت کشش در یک خط راست قرار میگیرد.
تاریخچه پل کابلی
با اینکه به نظر می رسد پل های کابلی به آینده چشم دوخته اند، ایده آن ها مسیر طولانی را پیموده است. اولین طرح شناخته شده از یک پل کابلی در کتابی به نام "ماشین های نووا" - منتشر شده در سال 1595 - آورده شده ولی این ایده تا قرن حاضر که مهندسان شروع به استفاده از پل های کابلی نمودند؛ مورد استقبال واقع نشده بود. در جنگ جهانی دوم که فولاد کمیاب بود، این طرح برای بازسازی پل های بمباران شد که هنوز فوندانسیون هایشان پابرجاست، کامل بود. با اینکه از احداث پل های کابلی در آمریکا دیری نمی گذرد، واکنش ها در این مورد بسیار مثبت بوده است.
پل کابلی و نحوه عملکرد آن
یک پل کابلی نوعی، یک تیر حمال(عرشه پل) پیوسته با یک یا چند برج بنا شده بالای پایه های پل در وسط دهانه است. از این برج ها، کابل ها به صورت اریب به سمت پایین (معمولا هر دو طرف) کشیده شده و تیر حمال(عرشه پل) را نگه می دارد.
کابل های فولادی بی نهایت قوی و در عین حال بسیار انعطاف پذیر هستند. کابل ها بسیار مقرون به صرفه می باشند چون سبب ساخت سازه ای سبکتر و باریکتر شده که در عین حال قادر به پل زدن بین مصافت های بیشتری است.اگرچه تنها تعداد کمی از آن ها برای نگه داشتن کل پل قوی هستند، انعطاف پذیریشان آن ها را در مقابل نیرو هایی که به ندرت در نظر گرفته می شوند مانند باد؛ ضعیف می نماید.
برای پل های کابلی با دهانه های طولانی به خاطر تضمین ثبات و پایداری کابل ها و پل در مقابل باد، می بایست مطالعات دقیقی انجام شود. وزن سبکتر پل یک وضع نامساعد در بادهای سهمگین و یک مزیت در مقابل زلزله محسوب می شود. نشست غیر هم سطح فوندانسیون ها که به مرور زمان یا طی یک زلزله روی می دهد، می تواند پل کابلی را دچار آسیب کند. پس باید در طراحی فوندانسیون ها دقت به عمل آورد.
ظاهر مدرن و در عین حال ساده پل کابلی آن را به یک شاخص واضح و جذاب تبدیل کرده است. خصوصیات منحصر به فرد کابل ها و به طور کلی سازه، طراحی پل را بسیار پیچیده مینماید. برای دهانه های طولانی تر، جایی که باد و نوسانات باید مورد توجه قرار گیرند؛ محاسبات بی نهایت پیچیده اند و عملا بدون کمک کامپیوتر و آنالیز کامپیوتری غیر ممکن می باشند. علاوه بر این ساخت پل کیده ای مشکل می باشد. اتصالات، برج ها، تیر های حمال و مسیر کابل ها سازه های پیچیده ای هستند که مستلزم ساخت دقیق می باشند.
طبقه بندی پل های کابلی
طبقه بندی واضحی برای پل های کابلی وجود ندارد. به هر حال آن ها می توانند توسط تعداد دهانه ها، برج ها و کابل ها و همچنین نوع تیر های حمال از یکدیگر تمیز داده شوند.
تنوع بسیاری در تعداد و نوع برج ها و همچنین تعداد و چینش کابل ها وجود دارد. برج های نوعی به صورت تکی، دوتایی، دروازه ای و یا حتی برج های A شکل استفاده شده اند.
علاوه بر این چینش کابل ها به طور عمده ای متفاوت می باشند. بعضی اقسام دارای چینش تکی، چنگی(موازی)، پنکه ای(شعاعی) و ستاره ای هستند. در بعضی موارد تنها کابل های یک طرف برج به عرشه وصل می شوند و طرف دیگر روی یک فندانسیون یا وزنه برابری لنگر می اندازند.
مزایای و تفاوت های پل کابلی
برای طول متوسط دهانه ها (150 تا 850 متر) پل کابلی سریعترین انتخاب مناسب برای یک پل می باشد. نتیجه یک پل مقرون به صرفه است که زیبایی آن غیر قابل انکار است. همچنین پل کابلی بهترین پل برای طول دهانه بین پلهای بازویی و معلق می باشد. در این محدوده طول دهانه، یک پل معلق مقدار بسیار بیشتری کابل نیاز خواهد داشت و این در حالی است که یک پل بازویی کامل، به طور قابل ملاحضه ای به مصالح بیشتر نیاز دارد که آن را به مقدار چشمگیری سنگین تر می نماید.
ممکن است به نظر برسد پل کابلی شبیه پل معلق است. با اینکه هر دو دارای عرشه هستند که از کابل ها آویزانند و هر دو دارای برج هستند؛ ولی این دو پل بار عرشه را به طرق بسیار متفاوتی نگه می دارند. این اختلافات در چگونگی اتصال کابل ها به برج می باشد. در پل معلق کابل ها آزادانه از این سر تا آن سر دو برج کشیده شده اند و انتقال بار به تکیه گاه های واقع در هر انتها صورت می گیرد. در پل کابلی، کابل ها در حالی که به برج ها متصلند به تنهایی بار را تحمل می کنند. در مقایسه با پل های معلق، پل کابلی به کابل کمتری نیاز دارد، می توان آن را از قطعات بتن پیش ساخته مشابه ساخت و همچنین احداث آن سریع تر است.
مهار کابلی چگونه کار می کند؟
بایستید و دستان خود را به صورت افقی در هر طرف دراز کنید. فرض کنید آن ها پل هستند و سرتان نیز برجی در وسط آن است. در این موقعیت ماهیچه های شما دستانتان را نگاه می دارد. سعی کنید یک مهار کابلی برای نگه داشتن دستانتان بسازید. یک تکه طناب به طول حدودی 150 سانتیمتر بردارید. از یک دستیار بخواهید هر یک از دو انتهای طناب را به هر یک از آرنج هایتان ببندد. سپس وسط طناب را روی سر خود قرار دهید. اینک طناب مانند یک مهار کابلی عمل می کند و آرنج هایتان را بالا نگه می دارد. از دستیارتان بخواهید تکه طناب دیگری به طول حدودی 180 سانتی متر را این بار به مچهایتان ببندد. طناب دوم را روی سرتا ن قرار دهید. حالا شما صاحب دو مهار کابلی هستید. فشردگی و فشار نیرو را در کجا احساس می کنید؟ ببینید مهار کابلی چگونه بار پل (دست هایتان) را به برج ( سر شما) منتقل می کند!
با اینکه به نظر می رسد پل های کابلی به آینده چشم دوخته اند، ایده آن ها مسیر طولانی را پیموده است. اولین طرح شناخته شده از یک پل کابلی در کتابی به نام "ماشین های نووا" - منتشر شده در سال 1595 - آورده شده ولی این ایده
دسته بندی | معماری |
بازدید ها | 11 |
فرمت فایل | pptx |
حجم فایل | 3059 کیلو بایت |
تعداد صفحات فایل | 90 |
در ساختمانسازی به سوی بیرونی یک ساختمان نما گفته میشود. در طراحی ساختمان، نما مهمترین بخش به شمار میرود زیرا نما چارچوب کار برای بقیه اجزای ساختمان را مشخص میکند. بسیاری از نماها ارزش تاریخی دارند و در کشورهای گوناگون قوانین سختگیرانهای در مورد موضوع تغییر نما وجود دارد که برخی از این قوانین هر گونه دگرگونی در نماهای تاریخی را ممنوع میکند.
در معماری سنتی ایرانی، آرایشی که پس از پایان کار ساختمان بر آن بیفزایند را آمود میگویند، مانند تزیین الحاقی، نماسازی سنگی یا آجری،کاشیکاری و گچبری.
پدیدار شناسی نمای ساختمانهای مسکونی
توقعات از نما به گفتهٔ هارالد دیلمان و همکارانش از نما چهار عملکرد انتظار میرود:
نما به عنوان محافظ
اولین و قدیمی ترین وظیفهای که نما به عهده دارد، وظیفهٔ محافظت از انسانها در مقابل تهدیدهای بیرونی است. انسان برای حفاظت خود در برابر عوامل جوی و اقلیمی از یک طرف و حیوانات موذی و انسانهای مزاحم از طرف دیگر، فضایی به نام خانه را برای خود ایجاد کرد.
تا زمانی که خانه برای ساکنان آن نقش حفاظ را بر عهده داشت و آن را برای محافظت خود در برابر تهدیدهای بیرونی میخواستند، نماسازی مفهومی نداشت. ساختمانهای مسکونی دیوارهای محکم و یکپارچهای محصور شده بودند که با حداقل نفوذی به بیرون بدنه تشکیل یک فضای عمومی را میدادند و نما سازی برای ساختمانهای مسکونی به مفهوم امروز آن نبود. چون نمای ساختمان حداقل منفذ را به بیرون داشت جلوی باد و باران، گرما و سرما و نفوذ عوامل حیوانی و انسانی را میگرفت، ولی ساختمان را از نور و تهویه لازم محروم میکرد. رفته رفته نیاز به این مواهب بیشتر شد و در نتیجه ایجاد روزنه در دیواره افزایش یافت، نیاز به پوستهٔ سومی برای حفاظت بیشتر شد.
برای این منظور انسان دیواری دور تا دور خانه و آبادی خود کشید. این دیوار گسترش فضاهای مسکونی در داخل "چهار دیواری اختیاری" و بدون پنجره به فضای عمومی را به دنبال داشت. همچنین افزایش تعداد واحدهای مسکونی به تراکم در داخل باروری شهر یا روستا انجامید.[۱] خانهها درون گرا طراحی شدند و آبادیها، تمرکز گرا و حول یک فضای اجتماعی میدان گونه به نام محل تجمع با گوشه نگاهی به تاریخ تمدنهای نخستین، از چین و هند(موهنجودارو)گرفته، تا ایران،میان رودان(بینالنهرین)،مصر،یونان و روم به درونگرایی خانههای مسکونی پی میبریم.
درون گرایی یکی از اصول معماری در خانه سازی کشورهای مسلمان نشین است ولی ابداع و ره آورد اسلام نبوده و فقط توسط آن تثبیت و ماندگار شده است. چنانکه میدانیم با ظهور اسلام در ساختمان سازی و معماری ابداع قابل توجهی نشد بلکه اسلام از معماری ادوار قبل در ساختن مساجد استفاده کرد.[۳] جالب توجه آنکه نه تنها خانههای یونان و روم باستان درونگرا و حول یک حیاط مرکزی شکل گرفتهاند، بلکه ویلاهای روم و کوشکهای تمدنهای دیگر که چهار جبهه یا چهار نما بودند، در پشت دیواری بلند از دید و دستبرد غریبهها حفاظت میشدند. تک کلبههای بسیار ابتدایی و ساده مستقر در مزارع اروپایی، یا برخی ساختمانهای عمومی تک افتاده در شهرها و روستاها، تنها نمونههایی از ساختمانهای برونگرای قرون وسطی در غرب هستند.
قاعدهٔ برونگرایی را نمیتوان به معماری بناهای عمومی همهٔ تمدنها و اعصار نسبت دهیم. زیرا هم مصریان و هم تمدنهای میان رودان و ایران باستان پیرامون معابد خود بارویی ستبر و بلند میکشیدند. آنها در برابر معابد صخرهای خود هم حیاطی به عنوان حصار ایجاد میکردند. ولی یونانیها و تاحدی رومیها، معبدهای خود را با الگو گرفتن از کلبههای چوبی به صورت منفرد بنا مینمودند این نیز در حالیست که آنها هم با ایجاد مفصلی بین فضای بسته و باز ردیف ستونهایی، جهت ایجاد فضایی نیمه باز میساختند که به سختی میتوان معنای امروزی "نما" را به آنها نسبت داد.[۱]
بسیاری تصور میکنند که اطراف کلیساهای اروپایی سبک رمانسک تا رنسانس باز بوده و دارای چهار نما میباشند ولی آنها نیز دارای یک یا دو جبههٔ باز بودند. کلیسای آنان نیز مانند مساجد شیعیان، از اطراف به بافت مسکونی و شهری متصل بود. کامیلوزیته با برداشت آماری خود از ۲۵۵ کلیسای شهر رم، ثابت کرده است که ۱۱۰ کلیسا از سه طرف،۹۶ کلیسا از دو طرف و فقط ۶۶ کلیسا از هیچ جبهه به بافت شهری متصل شدهاند. این ۶ کلیسا جدید یا متعلق به کلیسای پروتستان بوده است که بعد از قرن هفدهم ساخته شدهاند. موریس در کتاب تاریخ شکل شهر خود میگوید که کلیساها صحن یا جلو خانی مستقل به نام پارویس در جلوی سردر خود داشتند برای همین نمای اصلی آنها فقط برای مراجعین قابل مشاهده بود.
نما به عنوان رابط
با آنکه نما وظیفه داشت حایلی بین انسان و تهدیدهای خارجی باشد، ولی میبایست نقش ارتباط میان درون و بیرون، خصوصی و عمومی، خلوت و شلوغ، مصنوعی و طبیعی را ایفا کند. انسان نیاز به نور و تهویه داشت و محتاج ارتباط با طبیعت و جامعه بود. او میخواست گذر زمان و تغییر و تحولات جامعه را دنبال کند. برای همین نما تبدیل به رابط میان درون و بیرون شده، باید ورود نور، هوا و میهمان را به داخل تامین کرده، امکان دید خوبی را به بیرون ایجاد میکرد. روزنهها (در و پنجرهها) که عنصری از نما بودند این نقش را به عنوان رابط فیزیکی و بصری به عهده گرفتند.
در طول تاریخ اروپا پنجره به عنوان قابی برای دیدن منظرهٔ بیرون نقش خود را ایفا میکرد. اما تبدیل پنجره به عنوان رابط بصری میان فضای بیرون و درون مشکل دیگری را به همراه داشت و آن اینکه پنجره مهم ترین عنصر انتقال مزاحمتها از فضای بیرونی (سر و صدا و مشرفیت به ویژه برای طبقهٔ همکف) بود. برای همین تمهیداتی در جهت اینکه ساکن بتواند ببیند بدون آنکه دیده شود اندیشیده شد. محدودیتهای فنی و نبود مصالح مدرن باعث شد ابعاد پنجرهها در حد متعالی باقی بماند. ولی برای حل معضل مشرفیت ارتفاع کف پنجره به وسیله کرسی چینی ساختمان بالا کشیده شد، انواع شبکه و نرده اختراع شد و در نهایت فضاهای بلافاصل طبقههای همکف به کاربریهای غیر مسکونی تبدیل شد. آنچه که باعث شد در اوایل قرن بیستم، پنجرهها بزرگتر و جدارهها شفاف تر گردند از یک طرف نیاز به نور بیشتر و تهویه بهتر و از طرف دیگر امکان تولید سطوح بزرگتر شیشه در قرون نوزدهم بود.
شفافیت
شفافیت که یکی از اصول خرد گرایی و یک شعار سیاسی اجتماعی زمان بود، به معماری انتقال یافت و مفاهیم "سبکی" و "شفافیت" ارکان اصلی زیبایی شناسی نو گرا شدند. صلابت و شکوهی که از گذشته به ارث رسیده بود و در نماها متبلور میگشت، از نظر سیاسی و فرهنگی زیر سؤال رفت و یکی از نقاط ضعف معماری و شهر سازی گذشته معرفی گردید. شعارهای عدم استفاده از تزیین و بی پیرایگی مزید بر علت شده، پنجرههای سراسری را رواج داد.
منظور معماران نوگرای نسل اول از شفافیت صرفا " آن طرفش پیدا بودن" یک جنس؛ برای ایجاد رابطهٔ بصری میان درون و بیرون نبود. کالین رو نشان میدهد که منظور از شفافیت خیلی بیشتر از آن چیزی بود که معماران نوگرای دههٔ پنجاه و شصت میلادی از آن برداشت میکردند. او میگوید"شفافیت، همیشه در جایی اتفاق میافتد که در فضاها و محلهایی با دو یا چند سطح چند سطح چند معنایی قابل ربط باشند." او کارهای لوکوربوزیه را تحلیل کرد و نشان داد که تا چه حد ارتباط بین سطوح عمودی و افقی تنوع دارد. اینها مواردی هستند که هر کدام ایجاد شفافیت فضایی میکنند.
در مقابل این جامعه گرایی نسبی لوکوربوزیه، وارثان معماری نوگرا به ایجاد"شفافیت توسط دیوار شیشهای"بسنده کردند. برای ویلاهای مستقر در محوطهٔ سبز، نماهای شیشهای میتوانست رابط مناسبی مبان درون و بیرون باشد ولی این نماهای شیشهای برای مجتمعهای مسکونی آپارتمانی غیرقابل استفاده بود زیرا نمای شیشهای صرفا رابطهٔ بصری را تامین میکرد و مشکل تهویه فضاهای درونی تنها با کمک ابزارها و دستگاههای پیچیده فنی حل میشد. ایدهٔ "شفافیت کامل"مناسب نوع و عملکرد خاصی از ساختمان مانند فضاهای تجاری و اداری بود و در شرایط اقلیمی ویژهای مانند و اروپای شمالی و مرکزی قابل استفاده بود. ولی این راه حل هزینه بر و مستلزم دقت زیادی بود. پیامد دیگر تمسک به شفافیت برای تامین نور، هوا، فضای سبز و استفاده از شیشههای سراسری این بود که پوستههای "ماده زایی" شده شیشهای حتی اگر میتوانستند تداوم زندگی داخل و خارج ساختمان را تامین کنند، تعامل بین توده و فضا، نقش و زمینه فضای مثبت و منفی را از بین میبرد. آنچه که با عملکرد محافظتی نما تضاد داشت تبدیل نما به پوستهای نازک بود. برای همین در سالهای هفتاد و هشتاد میلادی عکس العمل شدید میان ساکنان در این مورد معماران را به تجدید نظر جدی مجبور کرد.
ارتباط درون و بیرون که دو جهان و دو حال و هوای متفاوت را تداعی میکنند آنقدر مهم بود که باعث شد هم ورودی و پنجره و هم نما نیز در ذهن انسان نقش یک مفصل را بازی کرده و هرکدام از آنها تبدیل به مکانی خاص گردند. در اروپا، فرایند تقویت درون و بیرون سیری پیوسته و روبه افزایش داشت و بعد از عکس العمل شدید ساکنین دوباره متعادل شد.[۱]
نقش نما به عنوان رابط در ایران
در ایران تا اواخر قرن نوزدهم، خانههای مسکونی، برای ایجاد این ارتباط فقط از حیاط مرکزی (فضای خصوصی) بهره میگرفتند و "ساختمان نیز مانند نابینایی که نگاهش به بیرون مسدود است به درون توجه دارد" از اواخر قرن نوزدهم میلادی، رویکرد معماران ایرانی نسبت به خانه مسکونی تغییر کرد و ایرانیها از اروپاییها الگو گرفتن و در حاشیه خیابانهای ساخت جدید، ساختمانهای مسکونی برونگرا شروع به شکل گیری کرد. این گرایش با فرهنگ درونگرای ساکنین تضاد داشت و ساکنین خانهها زندگی و حریم خصوصی خود را پشت پردههای ضخیم یا کرکره پنهان میکردند. سالهای چهل و پنجاه هجری اوج شفاف کردن نمای جنوبی خانهها بود و پنجرههای شیشهای سراسر نمای رو به حیاط را پوشاند، ولی ساکنان خانه با فضای بیرونی ارتباط نداشتند و باز هم زندگی خود را در پشت پردههای ضخیم و کرکرههای فلزی ادامه دادند. انتقال گرما و سرمای فراوان به درون واحد مسکونی تنها دستاورد این پنجرهها بود. در سالهای اخیر به علت توجه بیشتر به مسائل اقلیمی و از مد افتادن آنها پنجرهها دوباره کوچک شده و به تعادلی نسبی نزدیک شدهاند
نما به عنوان یک معرف
نما تنها وظیفهٔ حفاظ و یک رابط درون و بیرون باقی نماند. از زمانی که لباس فرد معرف شخصیت وی پنداشته شد، خانه نیز به مثابه "لباس دوم " میبایست، معرف شخصیت، ارج و مقام اجتماعی مالک خود باشد."در معماری غرب نما یا فاساد دارای حالت نمایش است؛ بدان صورت که در همان وهلهٔ اول کسی را که پشت آن زندگی میکند، نشان میدهد. همه چیز معرف و نشانهٔ شخصیت خانوادگی است، همه چیز طبقهٔ اجتماعی و مالکیت صاحبخانه را نشان میدهد.[۵]
انتخاب فرم چهارگوش در ساختمان باعث شد که ساختمانها دارای جهت شوند. فرم سقف شیب دار و جهتهای بالقوه گسترش ساختمان، باعث گردید تا انسان غربی از چهار نمای بالقوه یکی را که دارای جبهای با اهمیت تر و امکان مشاهده و دسترسی بهتر بود اصلی و جبههٔ مقابلش را دیوار پشتی یا جبهه پسین نامیده، دو بر دیگر را در صورتی که به بافت متصل نمیشد جبههٔ فرعی محسوب کند. در اروپا جبههٔ اصلی را "فاساد" به معنای چهره نامیدند. "این واژه ریشهٔ لاتین دارد ولی از اواخر قرون وسطی متداول شد."
از این زمان ظاهر ساختمان که در برخی مواقع طبقهٔ همکف آن را یک مغازه اشغال میکرد و صاحب مغازه در پشت وبالای آن زندگی میکرد میبایستی چهرهای مشتری پسند داشته و معرف شخصیت مالک خود باشد. در حالیکه رسم خودنمایی معمار هنوز متداول نشده بود، بنّا با سلیقه و مهارت خود سعی در بهبود کیفیت فاساد مینمود. به همین دلیل ساختمانها، همزمان با ت
دسته بندی | معماری |
بازدید ها | 3 |
فرمت فایل | docx |
حجم فایل | 2212 کیلو بایت |
تعداد صفحات فایل | 60 |
فهرست
مقدمه. 4
تاریخچه پل کابلی.. 5
پل کابلی و نحوه عملکرد آن.. 5
طبقه بندی پل های کابلی.. 6
مزایای و تفاوت های پل کابلی.. 6
مهار کابلی چگونه کار می کند؟. 7
پل کابلی و نحوه عملکرد آن.. 8
مزایای و تفاوت های پل کابلی.. 9
سازه های پارچه ای.. 10
شکل غشا در سازه های پارچه ای: 10
جنس غشا در سازه های پارچه ای : 10
سیستم های تکیه گاهی: 10
گسترش جانبی قاعده غشا 11
تحلیل واکنش سازه های پارچه ای در برابر بارهای وارده 11
مراحل تولید و ساخت... 12
تعریف سازه کششی.. 12
انواع سازه کششی: 13
فرم های اصلی سازه های کششی.. 13
سطح زین اسبی.. 14
خیمه (Conic): 14
آرک (Arch): 14
دلایل استفاده از سازه کابلی 15
منحنی مضاعف... 16
مزایای سازههای کابلی.. 16
رفتار سازههای کابلی.. 17
تحلیل استاتیکی قطعات و سیستمهای سازههای کابلی.. 17
رانش در سازههای کابلی.. 18
سازههای معلق با فرم منحنی طنابی.. 18
سازههای با کابل مضاعف... 18
سازههای با انحنای دوگانه. 18
پل کابلی و نحوه عملکرد آن.. 19
طبقهبندی پلهای کابلی.. 19
مقایسه پل کابلی ترکهای و معلق و پل بازوئی.. 20
سیستم کابلی برای مقاوم سازی ساختمانهای بتنی.. 20
مزایای این سیستم.. 21
تاریخچه پل کابلی.. 22
الگوی یک پل کابلی.. 22
پل کابلی و نحوه عملکرد آن.. 22
طبقهبندی پلهای کابلی.. 23
مزایای و تفاوتهای پل کابلی.. 24
مهار کابلی چگونه کار میکند؟. 24
پلهای معلق.. 26
سازه های کابلی.. 26
سقف های کابلی : 27
معایب سقف های ساده کابلی.. 27
مزایای سازه کابلی.. 29
سقف زین اسبی کلگری: 29
افت کابل.. 37
کابل مضاعف... 39
تاریخچه پل کابلی.. 41
پل کابلی و نحوه عملکرد آن.. 41
طبقه بندی پل های کابلی.. 42
مزایای و تفاوت های پل کابلی.. 42
مهار کابلی چگونه کار می کند؟. 43
طراحی سازه کابلی.. 47
پل کابلی و مزایا و معایب آن: 49
ازخواص کابل می توان به موارد زیر اشاره کرد: 54
تاریخچه پل کابلی: 54
طبقهبندی پلهای کابلی: 55
تعریف سازههای چادری.. 57
تاریخچه سازه چادری.. 57
مزایای سازههای غشایی.. 58
تکیه گاه ها 58
منابع.. 59
مقدمه
سازههای کابلی سازههایی هستند که تنشهای داخلی فقط به صورت فشار و کشش مستقیم است. اگر بار دیگری به آن اضافه شود، شکل بارگذاری تغییر کرده و به صورت سه بخش که هر یک قسمتی از بار را تحمل میکنند، تقسیم میشود. بارهای اضافی دیگر تعداد تقسیمات را افزایش داده تا به فرم منحنی کامل که عمل توزیع را بر عهده دارد، تبدیل نشود. در هر حال کابل فقط تحت کشش است. در این نوع سیستم اعضای اصلی که همان کابلها هستند به صورت کششی عمل می کنند. این سازهها برای طراحی پلها، پوشش دهانههای بزرگ، سقفها و … مورد استفاده قرار میگیرند. سادهترین مثال از یک سازه کششی یک وزنه آویخته از یک کابل است، وزنه دقیقاً در امتداد کابل ساکن میشود. در حالی که بین دو نقطه اتصال به صورت کشش در یک خط راست قرار میگیرد.
تاریخچه پل کابلی
با اینکه به نظر می رسد پل های کابلی به آینده چشم دوخته اند، ایده آن ها مسیر طولانی را پیموده است. اولین طرح شناخته شده از یک پل کابلی در کتابی به نام "ماشین های نووا" - منتشر شده در سال 1595 - آورده شده ولی این ایده تا قرن حاضر که مهندسان شروع به استفاده از پل های کابلی نمودند؛ مورد استقبال واقع نشده بود. در جنگ جهانی دوم که فولاد کمیاب بود، این طرح برای بازسازی پل های بمباران شد که هنوز فوندانسیون هایشان پابرجاست، کامل بود. با اینکه از احداث پل های کابلی در آمریکا دیری نمی گذرد، واکنش ها در این مورد بسیار مثبت بوده است.
پل کابلی و نحوه عملکرد آن
یک پل کابلی نوعی، یک تیر حمال(عرشه پل) پیوسته با یک یا چند برج بنا شده بالای پایه های پل در وسط دهانه است. از این برج ها، کابل ها به صورت اریب به سمت پایین (معمولا هر دو طرف) کشیده شده و تیر حمال(عرشه پل) را نگه می دارد.
کابل های فولادی بی نهایت قوی و در عین حال بسیار انعطاف پذیر هستند. کابل ها بسیار مقرون به صرفه می باشند چون سبب ساخت سازه ای سبکتر و باریکتر شده که در عین حال قادر به پل زدن بین مصافت های بیشتری است.اگرچه تنها تعداد کمی از آن ها برای نگه داشتن کل پل قوی هستند، انعطاف پذیریشان آن ها را در مقابل نیرو هایی که به ندرت در نظر گرفته می شوند مانند باد؛ ضعیف می نماید.
برای پل های کابلی با دهانه های طولانی به خاطر تضمین ثبات و پایداری کابل ها و پل در مقابل باد، می بایست مطالعات دقیقی انجام شود. وزن سبکتر پل یک وضع نامساعد در بادهای سهمگین و یک مزیت در مقابل زلزله محسوب می شود. نشست غیر هم سطح فوندانسیون ها که به مرور زمان یا طی یک زلزله روی می دهد، می تواند پل کابلی را دچار آسیب کند. پس باید در طراحی فوندانسیون ها دقت به عمل آورد.
ظاهر مدرن و در عین حال ساده پل کابلی آن را به یک شاخص واضح و جذاب تبدیل کرده است. خصوصیات منحصر به فرد کابل ها و به طور کلی سازه، طراحی پل را بسیار پیچیده مینماید. برای دهانه های طولانی تر، جایی که باد و نوسانات باید مورد توجه قرار گیرند؛ محاسبات بی نهایت پیچیده اند و عملا بدون کمک کامپیوتر و آنالیز کامپیوتری غیر ممکن می باشند. علاوه بر این ساخت پل کیده ای مشکل می باشد. اتصالات، برج ها، تیر های حمال و مسیر کابل ها سازه های پیچیده ای هستند که مستلزم ساخت دقیق می باشند.
طبقه بندی پل های کابلی
طبقه بندی واضحی برای پل های کابلی وجود ندارد. به هر حال آن ها می توانند توسط تعداد دهانه ها، برج ها و کابل ها و همچنین نوع تیر های حمال از یکدیگر تمیز داده شوند.
تنوع بسیاری در تعداد و نوع برج ها و همچنین تعداد و چینش کابل ها وجود دارد. برج های نوعی به صورت تکی، دوتایی، دروازه ای و یا حتی برج های A شکل استفاده شده اند.
علاوه بر این چینش کابل ها به طور عمده ای متفاوت می باشند. بعضی اقسام دارای چینش تکی، چنگی(موازی)، پنکه ای(شعاعی) و ستاره ای هستند. در بعضی موارد تنها کابل های یک طرف برج به عرشه وصل می شوند و طرف دیگر روی یک فندانسیون یا وزنه برابری لنگر می اندازند.
مزایای و تفاوت های پل کابلی
برای طول متوسط دهانه ها (150 تا 850 متر) پل کابلی سریعترین انتخاب مناسب برای یک پل می باشد. نتیجه یک پل مقرون به صرفه است که زیبایی آن غیر قابل انکار است. همچنین پل کابلی بهترین پل برای طول دهانه بین پلهای بازویی و معلق می باشد. در این محدوده طول دهانه، یک پل معلق مقدار بسیار بیشتری کابل نیاز خواهد داشت و این در حالی است که یک پل بازویی کامل، به طور قابل ملاحضه ای به مصالح بیشتر نیاز دارد که آن را به مقدار چشمگیری سنگین تر می نماید.
ممکن است به نظر برسد پل کابلی شبیه پل معلق است. با اینکه هر دو دارای عرشه هستند که از کابل ها آویزانند و هر دو دارای برج هستند؛ ولی این دو پل بار عرشه را به طرق بسیار متفاوتی نگه می دارند. این اختلافات در چگونگی اتصال کابل ها به برج می باشد. در پل معلق کابل ها آزادانه از این سر تا آن سر دو برج کشیده شده اند و انتقال بار به تکیه گاه های واقع در هر انتها صورت می گیرد. در پل کابلی، کابل ها در حالی که به برج ها متصلند به تنهایی بار را تحمل می کنند. در مقایسه با پل های معلق، پل کابلی به کابل کمتری نیاز دارد، می توان آن را از قطعات بتن پیش ساخته مشابه ساخت و همچنین احداث آن سریع تر است.
مهار کابلی چگونه کار می کند؟
بایستید و دستان خود را به صورت افقی در هر طرف دراز کنید. فرض کنید آن ها پل هستند و سرتان نیز برجی در وسط آن است. در این موقعیت ماهیچه های شما دستانتان را نگاه می دارد. سعی کنید یک مهار کابلی برای نگه داشتن دستانتان بسازید. یک تکه طناب به طول حدودی 150 سانتیمتر بردارید. از یک دستیار بخواهید هر یک از دو انتهای طناب را به هر یک از آرنج هایتان ببندد. سپس وسط طناب را روی سر خود قرار دهید. اینک طناب مانند یک مهار کابلی عمل می کند و آرنج هایتان را بالا نگه می دارد. از دستیارتان بخواهید تکه طناب دیگری به طول حدودی 180 سانتی متر را این بار به مچهایتان ببندد. طناب دوم را روی سرتا ن قرار دهید. حالا شما صاحب دو مهار کابلی هستید. فشردگی و فشار نیرو را در کجا احساس می کنید؟ ببینید مهار کابلی چگونه بار پل (دست هایتان) را به برج ( سر شما) منتقل می کند!
با اینکه به نظر می رسد پل های کابلی به آینده چشم دوخته اند، ایده آن ها مسیر طولانی را پیموده است. اولین طرح شناخته شده از یک پل کابلی در کتابی به نام "ماشین های نووا" - منتشر شده در سال 1595 - آورده شده ولی این ایده