فایل فردا

مرجع دانلود فایل های دانشجویی

فایل فردا

مرجع دانلود فایل های دانشجویی

اصل و ترجمه مقاله با موضوعی درباره کاربرد الکترومغناطیس در صنعت

فایل خریداری شده شامل مقاله انگلیسی به همراه فایل ترجمه آن است که فایل ترجمه به صورت قابل ویرایش و با فرمت DOC است
دسته بندی مقالات ترجمه شده isi
بازدید ها 4
فرمت فایل docx
حجم فایل 1051 کیلو بایت
تعداد صفحات فایل 21
اصل و ترجمه مقاله با موضوعی درباره کاربرد الکترومغناطیس در صنعت

فروشنده فایل

کد کاربری 1387
کاربر

عنوان فارسی مقاله : ارزیابی تحلیلی، عددی و شبکه عصبی در مقابل داده های تجربی برای بازدهی حفاظ های الکترومغناطیسی یک محوطه مستطیلی دارای دریچه

عنوان انگلیسی مقاله :

The Analytical, Numerical and Neural Network
Evaluation Versus Experimental of Electromagnetic
Shielding Effectiveness of a Rectangular Enclosure
with Apertures

چکیده فارسی :

چکیده

توسعه و تحقیق درباره مدل های پدیده های تقریبی مور استفاده در تخمین جفت شدگی کوپلاژ انرژی الکترومغناطیسی از طریق دریچه ها به درون محوطه ها در این مقاله ارائه می گردد. برخی ابعاد تئوری نفوذ میدان الکترومغناطیسی به داخل یک محوطه مستطیلی از دریچه ها بررسی می شوند. نشان داده شده است که برای یک توپولوژی سیستم ساده، فرمول بندی های تحلیلی مبتنی بر یک مدل خط انتقال، پیش بینی های خوبی را از کارایی حفاظتی یک محوطه مستطیلی دارای دریچه به دست می دهد. حفاظ سازی الکتریکی و نیز مغناطیسی را می توان به صورت تابعی از فرکانس، ابعاد محوطه، ابعاد دریچه ها و مکان انها در محوطه محاسبه نمود.

این رویکرد تحلیلی با مقایسه پیش بینی تاثیر و کارایی حفاظ سازی با شبیه سازی های میدان تمام با استفاده از تکنیک دامنه زمانی اختلاف محدود، نرم افزار CST و تحقیقات تجربی در زمینه تاثیر حفاظ سازی در یک اتاقک نیمه بازتابشی مورد تایید قرار می گیرد.

نیازهای صنعتی مربوط به EMC نیازمند ان است که نتایج تجربی کارایی حفاظ سازی برای بازه های فرکانسی تجربی ، دقیق باشد. به منظور برآوردم این شرط، یک مدل مبتنی بر شبکه عصبی برای پیاده سازی مدل های معکوس استفاده می شود تا پارامترهای هندسی و فیزیکی محوطه ها را تقریب بزند. در این مورد یک کاربرد در نظر گرفته می شود. ان به ارزیابی پارامتر کارایی و تاثیر حفاظ سازی (SE) به صورت تابعی از فرکانس می پردازد. در طی اندازه گیری های تجربی پارامتر SE ما قدرت تفکیک کافی برای فرکانس های میانی را به دست نیاوردیم.

کلمات کلیدی: سازگارپذیری الکترومغناطیسی، بازده حفاظ، دریچه، مدل خط انتقال،FDTD، نرم افزار CST

چکیده انگلیسی :

AbstractThe development and investigation of
approximate phenomenological models used to estimate the
electromagnetic energy coupling through apertures into
enclosures is presented in this paper. Some theoretical aspects of
the electromagnetic field penetration into a rectangular enclosure
through apertures are reviewed. It is shown that for a simple
system topology analytical formulations based on a transmission
line model give good predictions of the shielding effectiveness of arectangular enclosure with apertures. Both the magnetic and
electric shielding may be calculated as a function of frequency,
enclosure dimensions, apertures dimensions and positions within
the enclosure.
This analytical approach is validated by comparing the
shielding effectiveness predictions with full-field simulations
using the finite-difference time-domain technique, software CST
and experimental investigations of the shielding effectiveness in a
semi anechoic chamber.
Industrial needs in terms of EMC require that the
experimental results of the shielding effectiveness are accurate
for large frequency intervals. To meet this requirement, a neural
network based model is used for the implementation of inverse
models in order to estimate physical and geometrical parameters
of enclosures. In this context an application is considered. It
Concerns the evaluation of the shielding effectiveness (SE)
parameter as a function of the frequency. During experimental
measurements of the SE parameter we did not get enough
resolution for intermediate frequencies [17].


Index Terms— Electromagnetic compatibility, shielding
effectiveness, apertures, enclosures, transmission line model,
FDTD, software CST, experimental investigations.

مبانی نظری فناوری نانو و نانو تکنولوژی و صنعت

مبانی نظری فناوری نانو و نانوتکنولوژی و صنعت
دسته بندی علوم انسانی
بازدید ها 0
فرمت فایل docx
حجم فایل 44 کیلو بایت
تعداد صفحات فایل 30
مبانی نظری فناوری نانو و نانوتکنولوژی و صنعت

فروشنده فایل

کد کاربری 1113
کاربر

مبانی نظری فناوری نانو و نانوتکنولوژی و صنعت

توضیحات: فصل دوم پایان نامه کارشناسی ارشد (پیشینه و مبانی نظری پژوهش)

همراه با منبع نویسی درون متنی به شیوه APA جهت استفاده فصل دو پایان نامه

توضیحات نظری کامل در مورد متغیر

رفرنس نویسی و پاورقی دقیق و مناسب

منبع : انگلیسی وفارسی دارد (به شیوه APA)

نوع فایل: WORD و قابل ویرایش با فرمت doc

قسمتی از متن مبانی نظری

خلاصه ای از کار:

فناوری نانو

نانو تکنولوژی عبارت است از توانمندی تولید مواد، ابزارها و سیستم های جدید در اندازه های مولکولی و اتمی و در دست گرفتن این ساخته ها و استفاده از ویژگی هایی که در این ابعاد ظاهر می شوند (عبدی و همکاران، 1387).

بسیاری از متخصصان، محققان، مهندسان و دانشمندان علوم مختلف معتقدند که فناوری نانو موجب تغییرات مهمی در صنعت و جامعه می شود و این تغییرات می تواند این امکان را ایجاد کند که مواد جدیدی تولید کنیم، موادی که به صورت بالقوه می تواند اثرات مثبت یا منفی روی ایمنی، بهداشت و محیط داشته باشد (کارن و همکاران[1]، 2005).

....................

کاربرد نانو تکنولوژی

جهان امروز نیازمند استفاده از ابزارهای جدیدی برای ارتقای سطح زندگی بشر است. روزانه مواد گوناگونی بر اثر کار و کوشش و تحقیقات به دست آمده، در چرخه تولید انبوه قرار گرفته و به بازار تجاری عرضه می شوند. برای مثال افزایش کارایی وسایل الکترونیکی با کاهش اندازه آنها، مانند کامپیوترهای بسیار پیشرفته و یا پیشرفت عظیم صنعت ارتباطات تنها با استفاده وسیع از نانو تکنولوژی میسر شده است.

.................

رنگها و محلولها:

استفاده از رنگها در اندازه نانو می تواند قابلیت هاو توانایی های بسیار خوبی را به رنگ بدهد. برای مثال ساختن رنگهای سبک می تواند وزن هواپیماها را کاهش داده و باعث صرفه جویی در سوخت آنها شود. کاهش حلال ها مورد دیگریست که از آلودگی محیط زیست جلوگیری می کند. محلول های ضد باکتری موارد استفاده بسیاری در تاسیسات تصفیه آب دارد و دیگر نیازی به استفاده از ضد باکتری مانند کلر نخواهد بود. نانو تکنولوژی در مبدل های حرارتی با جذب امواج قرمز باعث صرفه جویی در انرژی شده و با تغییرات دما و یا محیط شیمیایی اطراف آن، موجب تغییر رنگ می شود. عمده ترین هدف از اجرای این پژوهشها در مورد رنگها اهداف زیست محیطی است. (وطن خواه، 1385).

...................

......................................

استفاده از نانوتکنولوژی در صنایع مختلف

نانوتکنولوژی، تغییر بنیادی مسیری است که در آینده، موجب ساخت مواد و ابزارها خواهد شد. امکان سنتز بلوک‌های ساختمانی نانو با اندازه و ترکیب به دقّت کنترل‌شده و سپس چیدن آنها در ساختارهای بزرگتر، که دارای خواص و کارکرد منحصربه‌فرد باشند، انقلابی در مواد و فرآیندهای تولید آنها ایجاد می‌کند. محقّقین قادر به ایجاد ساختارهایی از مواد خواهند شد که در طبیعت نبوده و شیمی مرسوم نیز قادر به ایجادشان نبوده‌است. برخی از مزایای نانوساختارها عبارتست از: مواد سبک‌تر، سخت‌تر و قابل برنامه‌ریزی؛ کاهش هزینه عمر کاری از طریق کاهش دفعات نقص فنّی؛ ابزارهایی نوین بر پایهٔ اصول و معماری جدید؛ بکارگیری کارخانجات مولکولی یا خوشه‌ای که مزیّت مونتاژ مواد در سطح نانو را دارند.

.................

کاربرد نانوتکنولوژی در صنعت الکترونیک

ذخیره‌سازی اطلاعات در مقیاس فوق‌‌العاده کوچک:

با استفاده از این فناوری می‌توان ظرفیت ذخیره‌سازی اطلاعات را در حد 1000 برابر یا بیشتر افزایش داد و نهایتاً به ساخت ابزارهای ابرمحاسباتی به کوچکی یک ساعت مچی منتهی شود. ظرفیت نهایی ذخیره اطلاعات به حدود یک ترابیت در هر اینچ مربع برسد، و این امر موجب ذخیره‌ سازی 50 عدد" دی وی دی "یا بیشتر در یک هارد دیسک با ابعاد یک کارت اعتباری می‌شود. ساخت تراشه‌ها در اندازههای فوقالعاده کوچک به‌عنوان مثال در اندازههای 32 تا 90 نانومتر، تولید دیسک‌های نوری 100 گیگابایتی در اندازه های کوچک نیز می باشد.

..........................

فناوری نانو و حمل و نقل

مواد جدیدی که از نانو ذرات ساخته شده‌اند، به میزان چشم گیری موجب کاهش وزن وسایل نقلیه خواهند شد. در خودروهای نسل آینده ، بجای فولاد ، از مواد مرکب یا نانو کامپوزیت هایی استفاده می‌شود که وزنی بسیار ناچیز و استحکام حیرت انگیز دارند (نسبت استحکام به وزن در این مواد در مقایسه با فولاد چند صد برابر بیشتر است) (خمامی زاده و. زارعی، 1385).

.................

نانوتکنولوژی و افزایش بازده موتورها

محققین دانشگاه کالیفرنیا در سانتاکروز در راس یک برنامه همکاری به منظور توسعه فناوری جدیدی جدیدی جهت افزایش بازده موتور های احتراق داخلی قرار دارند.

این فناوری قرار است حرارت خروجی از موتور را به جریان الکتریکی تبدیل نماید.این پروژه از مهندسی نانومتری مواد ، جهت تبدیل مستقیم انرژی حرارتی به انرژی الکتریکی استفاده خواهد نمود.

...............

چشم انداز علم نانو تکنولوژی

انقلاب جهانی تکنولوژی با تغییرات اجتماعی ، اقتصادی ، سیاسی و فردی در سراسر جهان همراه است. همچون انقلابهای کشاورزی و صنعتی در گذشته ، این انقلاب تکنولوژی نیز از پتانسیل دگرگون سازی کیفیت زندگی و طول عمر ، متحول سازی کار و صنعت ، تغییر و تبدیل ثروت ، جابجایی قدرت در سطح ملتها و در درون ملتها و افزایش تنش و تعارض برخوردار است.

.....................

نانو تکنولوژی در ایران

برای کشور در حال توسعه ایستایی نظیر کشور ما نیز گزینش استراتژی فرا صنعتی علاوه بر حیاتی و اجتناب ناپذیر بودن آن ، این حسن را نیز دارد که توجه جامعه را از مسائلی انحرافی و مشکلات کاذبی نظیر منازعه کهنه و نخ نما شده 250 ساله طرفداران سنتگرایی و مدرنیسم ، آن هم از نوع سطحی و عوامانه و کپی برداری شده‌اش که مربوط به مناسبات سپری شده سرمایه داری تا جز (نه تجاری) و صنعتی هستند.

.................

فناوری نانو در آینده نه چندان دور

واقعیت این است که بشر در آستانه بزرگترین تحول و دگرگونی تاریخ خود قرار دارد و این تحول همه چیز را در همه عرصه‌های زندگی بشر ، بطور انقلابی دگرگون خواهد ساخت. فناوری نانو ، جهان را در آستانه بزرگترین انقلاب تاریخ قرار داده است. در سایه انقلاب فناوری نانو توانمندیهای تازه‌ای در تولید و کاربرد ابزار میکرو الکترونیک یکی پس از..................

..................

قیمت 18000 تومان


پروژه پایانی تکنولوژی های جدید در صنعت تایر

دسته: تحقیقات مکانیکی
فرمت فایل ترجمه شده: WORD (قابل ویرایش)
تعداد صفحات پروژه: 42
_______________________________________________
بخشی از مطلب:
انواع تایر بر اساس تیوب گذاری:
1-تایر تیوب دار (inter tube tire)
در این  تایرها از یک تیوب در داخل تایر بهره می برد,که هر دوی آنها بر روی رینگ قرار میگیرند.تیوب یک محفظه لاستیکی حلقوی است که هوای فشرده را در خود نگه می دارد.و برای ساختن ان از لاستیک طبیعی یا مصنوعی استفاده می شود.
2-تایر تیوب لس (tubeless)
در این تایر ها تیوب داخلی حذف شده و هوای فشرده شده بین تایر و رینگ چرخ حبس می شود.اگر تایر تیوب لی پنچر شود و سوراخ ان ریز باشد,میتوان به وسیله مایع مخصوصی اقدام به ترمیم ان کرد و چنانچه سوراخ بزرگ باشد با انداختن تیوب به داخل تایرهمانند تایر تیوب دار از ان استفاده می نمائیم که در این حال دیگر به نام تایر تیوب لس نخواهد بود.

جهت دانلود محصول اینجا کلیک نمایید

اصل و ترجمه مقاله با موضوعی درباره کاربرد الکترومغناطیس در صنعت

فایل خریداری شده شامل مقاله انگلیسی به همراه فایل ترجمه آن است که فایل ترجمه به صورت قابل ویرایش و با فرمت DOC است
دسته بندی مقالات ترجمه شده isi
بازدید ها 4
فرمت فایل docx
حجم فایل 1051 کیلو بایت
تعداد صفحات فایل 21
اصل و ترجمه مقاله با موضوعی درباره کاربرد الکترومغناطیس در صنعت

فروشنده فایل

کد کاربری 1387
کاربر

عنوان فارسی مقاله : ارزیابی تحلیلی، عددی و شبکه عصبی در مقابل داده های تجربی برای بازدهی حفاظ های الکترومغناطیسی یک محوطه مستطیلی دارای دریچه

عنوان انگلیسی مقاله :

The Analytical, Numerical and Neural Network
Evaluation Versus Experimental of Electromagnetic
Shielding Effectiveness of a Rectangular Enclosure
with Apertures

چکیده فارسی :

چکیده

توسعه و تحقیق درباره مدل های پدیده های تقریبی مور استفاده در تخمین جفت شدگی کوپلاژ انرژی الکترومغناطیسی از طریق دریچه ها به درون محوطه ها در این مقاله ارائه می گردد. برخی ابعاد تئوری نفوذ میدان الکترومغناطیسی به داخل یک محوطه مستطیلی از دریچه ها بررسی می شوند. نشان داده شده است که برای یک توپولوژی سیستم ساده، فرمول بندی های تحلیلی مبتنی بر یک مدل خط انتقال، پیش بینی های خوبی را از کارایی حفاظتی یک محوطه مستطیلی دارای دریچه به دست می دهد. حفاظ سازی الکتریکی و نیز مغناطیسی را می توان به صورت تابعی از فرکانس، ابعاد محوطه، ابعاد دریچه ها و مکان انها در محوطه محاسبه نمود.

این رویکرد تحلیلی با مقایسه پیش بینی تاثیر و کارایی حفاظ سازی با شبیه سازی های میدان تمام با استفاده از تکنیک دامنه زمانی اختلاف محدود، نرم افزار CST و تحقیقات تجربی در زمینه تاثیر حفاظ سازی در یک اتاقک نیمه بازتابشی مورد تایید قرار می گیرد.

نیازهای صنعتی مربوط به EMC نیازمند ان است که نتایج تجربی کارایی حفاظ سازی برای بازه های فرکانسی تجربی ، دقیق باشد. به منظور برآوردم این شرط، یک مدل مبتنی بر شبکه عصبی برای پیاده سازی مدل های معکوس استفاده می شود تا پارامترهای هندسی و فیزیکی محوطه ها را تقریب بزند. در این مورد یک کاربرد در نظر گرفته می شود. ان به ارزیابی پارامتر کارایی و تاثیر حفاظ سازی (SE) به صورت تابعی از فرکانس می پردازد. در طی اندازه گیری های تجربی پارامتر SE ما قدرت تفکیک کافی برای فرکانس های میانی را به دست نیاوردیم.

کلمات کلیدی: سازگارپذیری الکترومغناطیسی، بازده حفاظ، دریچه، مدل خط انتقال،FDTD، نرم افزار CST

چکیده انگلیسی :

AbstractThe development and investigation of
approximate phenomenological models used to estimate the
electromagnetic energy coupling through apertures into
enclosures is presented in this paper. Some theoretical aspects of
the electromagnetic field penetration into a rectangular enclosure
through apertures are reviewed. It is shown that for a simple
system topology analytical formulations based on a transmission
line model give good predictions of the shielding effectiveness of arectangular enclosure with apertures. Both the magnetic and
electric shielding may be calculated as a function of frequency,
enclosure dimensions, apertures dimensions and positions within
the enclosure.
This analytical approach is validated by comparing the
shielding effectiveness predictions with full-field simulations
using the finite-difference time-domain technique, software CST
and experimental investigations of the shielding effectiveness in a
semi anechoic chamber.
Industrial needs in terms of EMC require that the
experimental results of the shielding effectiveness are accurate
for large frequency intervals. To meet this requirement, a neural
network based model is used for the implementation of inverse
models in order to estimate physical and geometrical parameters
of enclosures. In this context an application is considered. It
Concerns the evaluation of the shielding effectiveness (SE)
parameter as a function of the frequency. During experimental
measurements of the SE parameter we did not get enough
resolution for intermediate frequencies [17].


Index Terms— Electromagnetic compatibility, shielding
effectiveness, apertures, enclosures, transmission line model,
FDTD, software CST, experimental investigations.


گزارش کاراموزی جریان الکتریکی در صنعت برق

گزارش کاراموزی جریان الکتریکی در صنعت برق در 60 صفحه ورد قابل ویرایش
دسته بندی کارآموزی
بازدید ها 0
فرمت فایل doc
حجم فایل 274 کیلو بایت
تعداد صفحات فایل 60
گزارش کاراموزی جریان الکتریکی در صنعت برق

فروشنده فایل

کد کاربری 1280
کاربر

گزارش کاراموزی جریان الکتریکی در صنعت برق در 60 صفحه ورد قابل ویرایش



فهرست

عنوان صفحه

جریان الکتریکی 1

تاریخچه برق و الکتریسته 2

مشخصات جریان الکتریکی 2

سرعت رانش 4

چگالی جریان الکتریکی 4

اشکال مختلف جریان الکتریکی 5

اندازه گیری جریان الکتریکی 6

قانون اهم 7

آمپر متر چیست؟ 9

طرز کار آمپر متر 10

بکار بردن آمپر متر 12

مقاومت 14

تولید 16

تعاریف الکتریکی 17

تاریخچه تولید جریان الکتریسته 19

منابع انرژی اولیه بکار رفته در تولید برق 22

اتصال کوتاه برقی 24

برق اضطراری 26

انتقال توان الکتریکی 28

ورودی شبکه برق 29

خروجی شبکه 30

تولید 32

ژنراتور برقی(الکتریکی) 36

دیناموی گرام 38

مولدهای جریان مستقیم 42

ماشین های الکتریکی جریان مستقیم 43

جریان متناوب 44

توزیع برق و تغذیه خانگی 45

فرکانسهای AC در کشورها 49

تولید برق 55

لرزش دیوارها هم برق تولید می کند 66

نتیجه گیری 68

منابع 69


جریان الکتریکی در برق


جریان الکتریکی در برق ، جریان سرعت عبور الکترونها در یک سیم مسی یا جسم رسانا است. جریان قراردادی در تاریخ علم الکتریسته ابتدا به صورت عبور بارهای مثبت تعریف شد. هر چند امروزه می‌دانیم که در صورت داشتن رسانای فلزی ، جریان الکتریسته ناشی از عبور بارهای منفی ، الکترون ها ، در جهت مخالف است. علیرغم این درک اشتباه ، کماکان تعریف قراردادی جریان تغییری نکرده است. نمادی که عموما برای نشان دادن جریان الکتریکی (میزان باری که در ثانیه از مقطع هادی عبور می‌کند) در مدار بکار می‌رود، I است.
تاریخچه برق و الکتریسیته

تاریخ الکتریسیته به 600 سال قبل از میلاد می‌رسد. در داستانهای میلتوس (Miletus) می‌خوانیم که یک کهربا در اثر مالش کاه را جذب می‌کند. مغناطیس از موقعی شناخته شد که مشاهده گردید، بعضی از سنگها مثل مگنیتیت ، آهن را می‌ربایند. الکتریسیته و مغناطیس ، در ابتدا جداگانه توسعه پیدا کردند، تا این که در سال 1825 اورستد (Orested) رابطه‌ای بین آنها مشاهده کرد. بدین ترتیب اگر جریانی از سیم بگذرد می‌تواند یک جسم مغناطیسی را تحت تأثیر قرار دهد. بعدها فاراده کشف کرد که الکتریسیته و مغناطیس جدا از هم نیستند و در مبحث الکترومغناطیس قرار می‌گیرد.
مشخصات جریان الکتریکی

از نظر تاریخی نماد جریان I ، از کلمه آلمانی Intensit که به معنی شدت است، گرفته شده است. واحد جریان الکتریکی در دستگاه SI ، آمپر است. به همین علت بعضی اوقات جریان الکتریکی بطور غیر رسمی و به دلیل همانندی با واژه ولتاژ ، آمپراژ خوانده می‌شود. اما مهندسین از این گونه استفاده ناشیانه ، ناراضی هستند.
آیا شدت جریان در نقاط مختلف هادی متفاوت است؟

شدت جریان در هر سطح مقطع از هادی مقدار ثابتی است و بستگی به مساحت مقطع ندارد. مانند این که مقدار آبی که در هر سطح مقطع از لوله عبور می‌کند، همواره در واحد زمان همه جا مساوی است، حتی اگر سطح مقطعها مختلف باشد. ثابت بودن جریان الکتریسیته از این امر ناشی می‌شود که بار الکتریکی در هادی حفظ می‌شود. در هیچ نقطه‌ای بار الکتریکی نمی‌تواند روی هم متراکم شود و یا از هادی بیرون

ریخته شود. به عبارت دیگر در هادی چشمه یا چاهی برای بار الکتریکی وجود ندارد.



سرعت رانش

میدان الکتریکی که بر روی الکترونهای هادی اثر می‌کند، هیچ گونه شتاب برآیندی ایجاد نمی‌کند. چون الکترون ها پیوسته با یونهای هادی برخورد می‌کنند. لذا انرژی حاصل از شتاب الکترونها به انرژی نوسانی شبکه تبدیل می‌شود و الکترونها سرعت جریان متوسط ثابتی (سرعت رانش) در راستای خلاف جهت میدان الکتریکی بدست می‌آورند.
چگالی جریان الکتریکی

جریان I یک مشخصه برای اجسام رسانا است و مانند جرم ، حجم و ... یک کمیت کلی محسوب می‌شود. در حالی که کمیت ویژه‌ دانستیه یا چگالی جریان j است که یک کمیت برداری است و همواره منسوب به یک نقطه از هادی می‌باشد. در صورتی که جریان الکتریسیته در سطح مقطع یک هادی بطور یکنواخت جاری باشد، چگالی جریان برای تمام نقاط این مقطع برابر j = I/A است. در این رابطه A مساحت سطح مقطع است. بردار j در هر نقطه به طرفی که بار الکتریکی مثبت در آن نقطه حرکت می‌کند، متوجه است و بدین ترتیب یک الکترون در آن نقطه در جهت j حرکت خواهد کرد.



اشکال مختلف جریان الکتریکی

در هادیهای فلزی ، مانند سیمها ، جریان ناشی از عبور الکترونها است، اما این امر در مورد اکثر هادیهای غیر فلزی صادق نیست. جریان الکتریکی در الکترون ها ، عبور اتمهای باردار شده به صورت الکتریکی (یونها) است، که در هر دو نوع مثبت و منفی وجود دارند. برای مثال، یک پیل الکتروشیمیایی ممکن است با آب نمک (یک محلول از کلرید سدیم) در یک طرف غشا و آب خالص در طرف دیگر ساخته شود. غشا به یونهای مثبت سدیم اجازه عبور می‌دهد، اما به یونهای منفی کلر این اجازه را نمی‌دهد. بنابراین یک جریان خالص ایجاد می‌شود.

جریان الکتریکی در پلاسما عبور الکترونها ، مانند یونهای مثبت و منفی است. در آب یخ زده و در برخی از الکترولیتهای جامد ، عبور پروتون ها ، جریان الکتریکی را ایجاد می‌کند. نمونه‌هایی هم وجود دارد که علیرغم اینکه در آنها ، الکترونها بارهایی هستند که از نظر فیزیکی حرکت می‌کنند، اما تصور جریان مانند 'حفره‌های (نقاطی که برای خنثی شدن از نظر الکتریکی نیاز به یک الکترون دارند) مثبت متحرک ، قابل فهم تر است. این شرایطی است که در یک نیم هادی نوع p وجود دارد.
تاریخچه تولید جریان الکتریسیته

در تاریخ 1800 م در پی یک اختلاف حرفه ای بر سر واکنش گالوانیکی که از سوی لوییجی گالوانی حمایت می شد، الساندور ولتا پیل ولتایی خود را که مقدمه ابداع باتری بود، اختراع کرد که این پیل جریان الکتریکی پایداری را ایجاد می کرد. ولتا کشف کرده بود که موثرترین جفت فلز متفاوتی که جریان الکتریسته ایجاد می کنند، روی و نقره اند.
در دهه 1800 م کنگره بین المللی الکتریکی که الان به نام کمیسیون بین المللی الکترونیکی (IEC) معروف است، ولت را برای نیروی الکتروموتیو تصویب کرد. ولت به صورت اختلاف پتانسیل یک هادی وقتی که یک جریان یک آمپر توان یک وات را ایجاد می کند، تعریف شد.
تولید الکتریسته

تولید و توزیع الکتریسیته اغلب در دستان بخش خصوصی یا دولتی که خدمات رفاهی عمومی را در اختیار دارند، بوده است. در سالهای اخیر برخی دولت ها به عنوان بخشی از حرکتی برای اعمال فشار بازار به حقوق انحصاری، شروع به خصوصی سازی یا شرکتی کردن این خدمات رفاهی کرده اند. بازار الکتریسیته نیوزیلند مثالی از این نوع است. تقاضای الکتریسیته را می توان به دو صورت ارضاء کرد. روش اول که تا کنون برای خدمات رفاهی به کار می رفته است، ساختن پروژه های بزرگ تولید و ارسال الکتریسیته لازم به اقتصادهای سوختی در حال رشد، است. بسیاری از این پروژه ها دارای تاثیرات زیست محیطی نامطلوب نظیر آلودگی هوا یا آلودگی تشعشعی و آب گرفتگی بخش وسیعی از زمین، هستند. تولید پراکنده به عنوان روش جدیدی (روش دوم) برای برطرف کردن تقاضای الکتریکی، در نزدیکی مصرف کننده ها شناخته شده است. پروژه های کوچک تر پراکنده دارای خصوصیات زیر هستند:

ـ حفاظت در برابر خاموشی های برق ناشی از متوقف کردن نیروگاه های غیر متمرکز یا خطوط انتقال به منظور تعمیر، فریب بازار یا توقفهای اضطراری.

ـ کاهش آلودگی.

ـ اجازه دادن به بازیگران کوچک تر برای ورود به بازارهای انرژی.

روش های تبدیل توان های دیگر به توان الکتریکی

توربین های دوار که به ژنراتورهای الکتریکی متصل شده اند، اکثر الکتریسیته تجاری موجود را تولید می کنند. توربین ها عموماً توسط بخار، آب، باد یا دیگر مایعات به عنوان یک واسطه حامل انرژی، گردانده می شوند. پیل های سوختی که برای تولید الکتریسیته از مواد شیمیایی مختلفی استفاده می کنند، توسط برخی از مردم مناسب ترین منبع برق برای بلند مدت شناخته می شوند، خصوصاً اگر بتوان از هیدروژن به عنوان ماده تغذیه در این پیل ها استفاده کرد. اما به هرحال هیدروژن معمولاً تنها یک حامل انرژی است و بایستی توسط منابع توان دیگری ایجاد شود. ژنراتورهای کوچک قابل حمل نیز عموماً توسط موتورهای دیزل کار می کنند که خصوصاً در کشتی ها، مکان های مسکونی دور افتاده و برق اضظطراری استفاده می شوند.

منابع انرژی اولیه، بکار رفته در تولید برق

جهان امروز برای تولید انرژی بر زغال سنگ و گاز طبیعی تکیه می کند. هزینه های بالای مورد نیاز برای انرژی هسته ای و ترس از خطرات این انرژی، از دهه 1970م جلوی تاسیس نیروگاه های جدید هسته ای را در آمریکای شمالی گرفته است. توربین های بخار را می توان توسط بخارهای ناشی از منابع زمین گرمایی، انرژی خورشیدی، مایعات، سوخت های فسیلی گازی و جامد، به راه انداخت. راکتورهای هسته ای از انرژی ناشی از شکافت اورانیوم یا پلوتونیوم رادیواکتیو برای تولید آزمایش‌های مربوط به گرما استفاده می کنند. این راکتورها اغلب از دو مدار بخار اولیه و ثانویه تشکیل شده تا یک لایه حفاظتی اضافی را بین محل قرار گرفتن سوخت هسته ای و اتاق ژنراتور قرار دهد. نیروگاه های برق آبی از آبی که مستقیماً از توربین ها عبور می کند، برای راه اندازی ژنراتورها استفاده می کنند. کنترل جزر و مد از نیروی ماه بر روی بدنه آب دریاها برای گرداندن یک توربین استفاده می کنند. ژنراتورهای بادی از باد برای گرداندن توربین هایی که با یک ژنراتور مرتبط اند، استفاده می کنند. یروگاه برق آبی ذخیره شده با پمپ برای هم سطح کردن تقاضاها روی یک شبکه برق به کار می رود. تولید الکتریسیته توسط هم جوشی آزمایش‌های مربوط به گرما هسته ای به عنوان راه حلی ممکن برای تولید الکتریسیته پیشنهاد شده است. در حال حاضر برخی موانع فنی و مسایل زیست محیطی در مسیر این راه وجود دارد که اگر برطرف شوند هم جوشی، یک منبع انرژی الکتریکی نسبتاً تمیز و بی خطر را تامین خواهد کرد. پیش بینی می شود که یک راکتور آزمایشی بزرگ «ITER) در سال 2005-2006 شروع به کار کند.


تصویر

اولین ژنراتور هیدروالکتریک بزرگ در آبشار نیاگارای ایالات متحده (که تحت دیدگاه فنی ساخته و نصب شده بود) نصب شد و از طریق خطوط انتقال، الکتریسیته را برای بوفالو، نیویورک فراهم ساخت.


تلفات

به منظور کاهش درصد تلفات توان لازم است که الکتریسیته را در ولتاژهای بالا انتقال دهیم. هرچه که ولتاژ بالاتر باشد جریان کمتر خواهد بود که این امر اندازه ی کابل مورد نیاز و میزان انرژی تلف شده را کاهش می دهد. انتقال در طول خطوط بلند معمولاً در ولتاژهای 100 کیلو ولت و بالاتر صورت می گیرد. تلفات انتقال و توزیع در ایالات متحده در سال 2003م 2/7 و در انگلستان در سال 1998م 4/7 درصد تخمین زده شده است. وقتی لازم است که توان را در طول خطوط بسیار بلند انتقال دهیم، استفاده از جریان مستقیم برای انتقال، به جای جریان متناوب موثرتر ( و بنابراین اقتصادی تر) است. به دلیل اینکه این امر نیازمند هزینه کردن پول بسیار زیادی بر روی مبدل های توان AC/DC است، از این روش تنها در هنگام انتقال مقادیر بسیار زیاد توان در طول خطوط بسیار بلند یا برای موقعیت های خاص، نظیر یک کابل زیر دریا انجام می شود. همچنین به دلیل طبیعت بارهایی که به شبکه وصل می شوند، توان از بین می رود؛ این تلفات با نام ضریب توان بیان می شود. اگر ضریب توان کم باشد بخش زیادی از توان هدر می رود. شرکت های بهره بردار تلاش شایان توجهی را برای حفظ یک ضریب توان خوب صرف می کنند.